對于那么多的曲線計算公式,我該如何選擇最佳的擬合方程呢?
樣本濃度的分析是根據(jù)標(biāo)準(zhǔn)品數(shù)據(jù)所生成的標(biāo)準(zhǔn)曲線完成的,要確保樣本結(jié)果的準(zhǔn)確性,就要保證標(biāo)準(zhǔn)曲線盡量能還原抗原抗體的動力學(xué)反應(yīng)過程。
一般情況按照說明書推薦方法擬合標(biāo)曲,可以用軟件繪制也可以手動制作。標(biāo)曲呈現(xiàn)s型曲線,兩端趨于水平,中間趨于線性,中間部分為較佳的檢測范圍。當(dāng)標(biāo)準(zhǔn)品的量超過與包被抗體結(jié)合的量,此時標(biāo)準(zhǔn)品已飽和,在增加標(biāo)準(zhǔn)品的量,其OD值不再變化,故當(dāng)標(biāo)準(zhǔn)品達(dá)到一定濃度后,曲線趨于水平。按照科學(xué)分析方法,如果存在奇異點或者污點,直接采用線性分析不是很好,要對擬合曲線的幾個點進(jìn)行取舍,同時也可以改用雙對數(shù)直線擬合或者四參數(shù)曲線擬合。
常用的曲線擬合回歸方程主要為以下7種:
1.直線回歸
直線回歸是最簡單的回歸模型,也是最基本的曲線擬合回歸分析方法,將所有的測試點擬合為一條直線。
其擬合函數(shù)方程式為:y=a+bx
2.二次多項式擬合回歸方程
二次多項式成拋物線狀,開口向下或者向上,在很多ELISA實驗中,擬合近似于二次多項式的升段或者降段,由于曲線的特性,同一個濃度值在曲線圖上可能表現(xiàn)出沒有對應(yīng)的OD值、有一個OD值,或者兩個OD值,所以使用二次多項式擬合時,最好保證取值的范圍都落在曲線的升段或者降段,否則哪怕是相關(guān)系數(shù)很好也很可能與實際的值不一致。
其擬合函數(shù)方程式為:y=a+b x+c x2
3.三次多項式擬合回歸方程
三次多項式像倒?fàn)畹?lsquo;S’形,在實驗結(jié)果剛好在曲線的升段或者降段的時候,效果還可以,但是對于區(qū)間較廣的情形,由于其彎曲的波動,三次方程擬合模擬不一定很好,跟二次方程擬合一樣,看曲線的相關(guān)系數(shù)的同時也要看計算的點在曲線上的分布,這樣才算出理想的結(jié)果,本軟件計算值時,選擇性的取相對于濃度或者OD值,比較符合實際的那個結(jié)果,而沒有將多個結(jié)果列出。
擬合函數(shù)方程式為:y=a+b x+c x2+d x3
4.半對數(shù)擬合回歸方程
半對數(shù)擬合即將濃度值取對數(shù)值,然后再和對應(yīng)的OD值進(jìn)行直線回歸,理想的狀態(tài)下,在半對數(shù)坐標(biāo)中是一條直線,常用于濃度隨著OD值的增加或者減低呈對數(shù)增加或者減少的情況,即濃度的變化比OD值的變化更為劇烈。在ELISA實驗中較常用(有很多用EXCEL畫圖時,也常使用半對數(shù))。
擬合函數(shù)方程式為:y=a lg(x)+b
5.Log-Log擬合回歸方程
Log-Log擬合和半對數(shù)相似,只是將OD值和對應(yīng)的濃度值均取對數(shù),然后再進(jìn)行直線回歸。
擬合函數(shù)方程式為:lg(y)=a lg(x)+b
6.Logit-Log擬合回歸方程
Logit-log則是免疫學(xué)檢測中的模型,可用于競爭法。它最早用于RIA,但在ELISA中也是可以應(yīng)用的。Logit變換源于數(shù)學(xué)中的Logistic曲線。在競爭法放射免疫分析(RIA)及ELISA中,當(dāng)競爭性反應(yīng)物為0時結(jié)合率為100%,如果某一濃度下結(jié)合率為B,B=OD/OD(0),在對B進(jìn)行Logit變換:y=ln[B/(1-B)],之后y與濃度的對數(shù)成線性關(guān)系,即:y=a+b lg(x),擬合函數(shù)方程式為:lg(y)=a lg(x)+b就得到了Logit-log直線回歸模型,這個模型一般適用于競爭法的擬合,所以擬合時要求只有少有一個零濃度測試的OD值,并且此值為整個反應(yīng)的最大值(也就是我們常說的至少要做一個空白對照)。
7.四參數(shù)擬合回歸方程
四參數(shù)方程的擬合函數(shù)表達(dá)式為:
競爭法和夾心法都可以用到。它的形狀,根據(jù)情況,可能是一個單調(diào)上升的類似指數(shù),對數(shù),或雙曲線的曲線,也可能是一個單調(diào)下降的上述曲線,還可以是一條S形曲線。它要求X值不能小于0(因為指數(shù)是實數(shù),故有此要求)。在很多情況下它都可以擬合ELISA的反應(yīng)曲線,所以它也成了ELISA中應(yīng)用最廣的模型之一。
切記,在實驗過程中,要根據(jù)各個實驗本身的特點,選擇最適合的曲線擬合模型,才能得到最合理的實驗結(jié)果,一般情況下,需要綜合考慮標(biāo)準(zhǔn)曲線的趨勢走向以及R值的大小,來最終選擇適合自己的回歸方程。